
<Insert Picture Here>

<Insert Picture Here>

Caching Schemes & Accessing Data
Lesson 2

Objectives

After completing this lesson, you should be able to:
• Describe the different caching schemes that

Coherence offers
• Understand their uses
• Understand how to create a NamedCache
• Understand how to access and update data in the

cache

Introduction to NamedCaches

• Developers use NamedCaches to manage data

• NamedCache
• Logically equivalent to a Database table
• Store related types of information (trades, orders, sessions)
• May be hundreds / thousands of per Application
• May be dynamically created
• May contain any data (no need to setup a schema)
• No restriction on types (homogeneous and heterogeneous)
• Not relational (but may be)

Introduction to NamedCaches

• NamedCache implementations are configurable
• Permit different mechanisms for organizing data
• Permit different runtime characteristics (capacity,

performance etc…)

• A mechanism for organizing data is often called a
Topology or more generically, a Scheme

• Coherence ships with some standard schemes
• You may configure / override / create your own!

Topologies at a glance

• Local Scheme
• Replicated Scheme
• Distributed Scheme
• Near Scheme

The Local Scheme
Coherence Schemes

The Local Scheme

• Non-Clustered Local Cache
• Contains a local references of POJOs in Application Heap

• Why:
• Replace in-house Cache implementations
• Compatible & aligned with other Coherence Schemes

• How:
• Based on SafeHashMap (high-performance, thread-safe)
• Size Limited (if specified)

• Configurable Expiration Policies:
• LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,

Pluggable

The Local Scheme

The Replicated Scheme
Coherence Schemes

The Replicated Scheme

• Bruce-force implementation of Clustered Caching
• Why:

• Designed for extreme read performance

• How:
• Replicate and maintain copies of all entries in all Members
• Zero latency access as all entries are local to Members
• Replication and syncing process transparent to developer

• Configurable Expiration Policies:
• LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,

Pluggable

The Replicated Scheme

The Replicated Scheme

The Replicated Scheme

• Cost Per Update
• Each Member must be updated!
• Not scalable for heavy writes!

• Cost Per Entry
• Each Entry consumes Nx memory (N = #Members)
• 1x for each Member
• Not scalable for large caches!

The Distributed Scheme
Coherence Schemes

The Distributed Scheme

• Sophisticated approach for Clustered Caching
• Why:

• Designed for extreme scalability

• How:
• Transparently partition, distribute and backup cache entries

across Members
• Often referred to as ‘Partitioned Topology’

• Configurable Expiration Policies:
• LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,

Pluggable

The Distributed Scheme

The Distributed Scheme

The Distributed Scheme

• Each Member has logical access to all Entries
• At most 2 network-hop for Access
• At most 4 network-hops for Update
• Regardless of Cluster Size

• Linear Scalability
• Cache Capacity Increases with Cluster Size
• Coherence Load-Balances Partitions across Cluster
• Point-to-Point Communication
• No multicast required (sometimes not allowed)

The Distributed Scheme

The Distributed Scheme

• Seamless Failover and Failback
• Backups ‘promoted’ to be Primary
• Primary ‘makes’ new Backup(s)

• Invisible to Application
• Apart from some latency on entry recovery

• Recovery occurs in Parallel
• Not 1 to 1 like Active + Passive architectures

• Any Member can fail without data loss
• Configurable # backups
• No Developer or Infrastructure intervention

The Distributed Scheme

• Benefits:
• Deterministic Access and Update Latency (regardless of

Cluster Size)
• Cache Capacity Scales with Cluster Size Linearly
• Dynamically scalable without runtime reconfiguration

• Constraints:
• Cost of backup (but less than Replicated Topology)
• Cost of non-local Entry Access (across the network)

• (use Near Scheme)

The Distributed Scheme

• Lookup-free Access to Entries!
• Uses sophisticated ‘hashing’ to partition and load-balance

Entries onto Cluster Resources
• No registry is required to locate cache entries in Cluster!
• No proxies required to access POJOs in Cluster!

• Master / Slave pattern at the Entry level!
• Not a sequential JVM-based one-to-one recovery pattern

• Cache still operational during recovery!

The Near Scheme
Coherence Schemes

The Near Scheme

• A composition of pluggable Front and Back schemes
• Provides L1 and L2 caching (cache of a cache)

• Why:
• Partitioned Topology may always go across the wire
• Need a local cache (L1) over the distributed scheme (L2)
• Best option for scalable performance!

• How:
• Configure ‘front’ and ‘back’ topologies

• Configurable Expiration Policies:
• LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,

Pluggable

The Near Scheme

The Near Scheme

The Near Scheme
Coherency Options

• Local Cache Coherency Options
• Seppuku: Event-Based ‘Kill Yourself’ Invalidation
• Standard Expiry: LFU, LRU, Hybrid, Custom

• No messaging system required for invalidation!
• Built into infrastructure
• High-performance

The Near Scheme

Accessing & Updating data in a cache

• The CacheFactory is a topology agnostic way to
access NamedCaches

• It provides:
• Mechanisms to manage underlying Cluster Instance
• Mechanisms to manage Membership lifecycle
• Mechanisms to work with NamedCaches transactionally (not

covered in this course)

• Useful methods
static Cluster ensureCluster()

static void shutdown()
static NamedCache getCache(String sName)

Accessing & Updating data in a cache

• To create a named cache:

• The NamedCache interface implements java.util.Map,
so you can use the standard map methods such as:
get, put, putAll, size, clear, lock,
unlock…

• Also implements JCache

CacheFactory.ensureCluster();

NamedCache myCache = CacheFactory.getCache(“employees“);

CacheFactory.ensureCluster();

NamedCache myCache = CacheFactory.getCache(“employees“);

Some useful NamedCache methods

• Object put(Obejct key, Obejct value) – put an object in the
named cache. (Blocking call)

• Object get(Obejct key) – get the entry from the named cache
for that key

• void clear() – removes all entries from the named cache
• boolean containsKey(Obejct key) – returns true if the named

cache contains a entry for the key
• booelan containsValue(Object value) – returns true if there is

at least one entry with this value in the named cache
• Object remove(Obejct key)
• Set entrySet() – returns a set of key, value pairs
• Collection values() – gets all values back as a collection

Accessing & Updating data in a cache

• To put data into the cache use:

• To retrieve data use:

myCache.put(“Name”,”Tim Middleton”);myCache.put(“Name”,”Tim Middleton”);

String name = (String)myCache.get(“Name”);String name = (String)myCache.get(“Name”);

Clustered Hello World

public void main(String[] args) throws IOException {
NamedCache nc = CacheFactory.getCache(“test”);
nc.put(“key”, “Hello World”);
System.out.println(nc.get(“key”));

System.in.read(); //may throw exception
}

• Joins / Establishes a cluster
• Places an Entry (key, value) into the Cache “test” (notice no

configuration)
• Retrieves the Entry from the Cache.
• Displays it.
• “read” at the end to keep the application (and Cluster) from

terminating

Summary

In this lesson, you should have learned how to:
• Describe the different caching schemes that

Coherence offers
• Understand their uses
• Understand how to create a NamedCache
• Understand how to access and update data in the

cache

Labs 3 & 4

• Lab 3
• Create Java classes to access data in a Coherence data grid

• Lab 4
• Leaving strings behind – create a Person object to store

within the data grid

	Slide Number 1
	Caching Schemes & Accessing Data
	Objectives
	Introduction to NamedCaches
	Introduction to NamedCaches
	Topologies at a glance
	The Local Scheme
	The Local Scheme
	The Local Scheme
	The Replicated Scheme
	The Replicated Scheme
	The Replicated Scheme
	The Replicated Scheme
	The Replicated Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Near Scheme
	The Near Scheme
	The Near Scheme
	The Near Scheme
	The Near Scheme�Coherency Options
	The Near Scheme
	Accessing & Updating data in a cache
	Accessing & Updating data in a cache
	Some useful NamedCache methods
	Accessing & Updating data in a cache
	Clustered Hello World
	Summary
	Labs 3 & 4
	Slide Number 37

